16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90540/545 Series

MB90543/F543/549/F549/V540

■ DESCRIPTION

The MB90540/545 series with FULL-CAN and FLASH ROM is specially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces (one for MB90V545 series), which conform to V2.0 Part A and Part B, supporting very flexible message buffering. Thus, offering more functions than a normal full CAN approach. In the new $0.5 \mu \mathrm{~m}$ Technology Fujitsu now also offer FLASH-ROM. An internal voltage booster substitutes the necessity of a second programming voltage.
An on board voltage regulator provides 3 V to the internal MCU core. This constitutes a major advantage in terms of EMI and power consumption.
The internal PLL clock frequency multiplier, provides an internal 62.5 nsec instruction cycle time with an external 4 MHz clock.
Further more it features 4 channels Output Capture Units and 8 channels Input Capture Units with a 16-bit free running timer. Two UARTs constitute additional functionality for communication purposes.
The external bus interface allows full use to be made of the 16MByte address space.

■ FEATURES

- 16-bit core CPU : 4MHz external clock (16 MHz internal, 62.5 nsec instr. cycle time)
- 32 kHz Subsystem Clock
- New $0.5 \mu \mathrm{~m}$ CMOS Process Technology
- Internal voltage regulator supports 3 V MCU core, offering low EMI and low power consumption figures
- FULL-CAN interfaces (MB90540 series : 2 interf., MB90545 series : 1 interf.); conform to Version 2.0 Part A and Part B, flexible message buffering (mailbox and FIFO buffering can be mixed)
(Continued)

PACKAGE

100-pin Plastic QFP
(FPT-100P-M06)
(FPT-100P-M05)

MB90540/545 Series

(Continued)

- Powerful interrupt functions (8 progr. priority levels; 8 external interrupts)
- $\mathrm{El}^{2} \mathrm{OS}$ - Automatic transfer function indep.of CPU
- 18-bit Time-base counter
- Watchdog Timer
- 2 full duplex UARTs; UART0 supports 10.4 KBaud (USA standard), UART 1 also for serial transfer with clock (SCI) programmable
- Serial I/O: 1ch for synchronous data transfer
- A/D Converter: 8 ch. analog inputs (Resolution 10 bits or 8 bits)
- 16-bit reload timer * 2ch
- ICU (Input capture) 16bit * 8 ch
- OCU (Output capture) 16bit * 4ch
- 16-bit Programmable Pulse Generator 4ch
- External bus interface
- Optimized instruction set for controller applications (bit, byte, word and long-word data types; 23 different addressing modes; barrel shift; variety of pointers)
- 4-byte instruction execution queue
- signed multiply (16bit*16bit) and divide (32bit/16bit) instructions available
- Program Patch Function
- Fast Interrupt processing
- Low Power Consumption - 10 different power saving modes: (Sleep, Stop, CPU intermittent mode, Hardware standby,...)
- Package: 100-pin plastic QFP

Controller Area Network (CAN) - License of Robert Bosch GmbH

MB90540/545 Series

PRODUCT LINEUP

The following table provides a quick outlook of the MB90540/545 Series

Features	MB90V540	MB90F543/F549	MB90543/549
CPU	F²MC-16LX CPU		
System clock	On-chip PLL clock multiplier ($\times 1, \times 2, \times 3, \times 4,1 / 2$ when PLL stop) Minimum instruction execution time: $62.5 \mathrm{~ns}(4 \mathrm{MHz}$ osc. $\mathrm{PLL} \times 4)$		
ROM	External	Boot-block Flash memory 128 K/256 Kbytes	Mask ROM 128 K/256 Kbytes
RAM	8 Kbytes	6 Kbytes	6 Kbytes
Technology	$0.5 \mu \mathrm{~m}$ CMOS with onchip voltage regulator for internal power supply	$0.5 \mu \mathrm{~m}$ CMOS with on-chip voltage regulator for internal power supply + Flash memory On-chip charge pump for programming voltage	$0.5 \mu \mathrm{~m}$ CMOS with on-chip voltage regulator for internal power supply
Operating voltage range	$5 \mathrm{~V} \pm 10$ \%		
Temperature range	-40 to $85{ }^{\circ} \mathrm{C}$		
Package	PGA-256	QFP100	
UART0	Full duplex double buffer Supports asynchronous/synchronous (with start/stop bit) transfer Baud rate: 4808/5208/9615/10417/19230/38460/62500/500000 bps (asynchronous) $500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$ (synchronous) at System clock $=16 \mathrm{MHz}$		
UART1(SCI)	Full duplex double buffer Asynchronous (start-stop synchronized) and CLK-synchronous communication Baud rate: 1202/2404/4808/9615/31250 bps (asynchronous) $62.5 \mathrm{~K} / 12 \mathrm{~K} / 250 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ (synchronous) at $6,8,10,12,16 \mathrm{MHz}$		
Serial IO	Transfer can be started from MSB or LSB Supports internal clock synchronized transfer and external clock synchronized transfer Supports positive-edge and negative-edge clock synchronization Baud rate : 31.25K/62.5K/125K/500K/1Mbps at System clock $=16 \mathrm{MHz}$		
A/D Converter	10-bit or 8-bit resolution 8 input channels Conversion time: $26.3 \mu \mathrm{~s}$ (per one channel)		
16-bit Reload Timer (2 channels)	Operation clock frequency: fsys $/ 2^{1}$, fsys $/ 2^{3}$, fsys $/ 2^{5}$ (fsys = System clock frequency) Supports External Event Count function		
16-bit IO Timer	Signals an interrupt when overflow Supports Timer Clear when a match with Output Compare(Channel 0) Operation clock freq.: fsys $/ 2^{2}$, fsys $/ 2^{4}$, fsys $/ 2^{6}$, fsys $/ 2^{8}$ (fsys = System clock freq.)		
16-bit Output Compare (4 channels)	Signals an interrupt when a match with 16-bit IO Timer Four 16-bit compare registers A pair of compare registers can be used to generate an output signal		

(Continued)

MB90540/545 Series

(Continued)

Features	MB90V540	MB90F543/F549	MB90543/549
16 -bit Input Capture (8 channels)	Rising edge, falling edge or rising \& falling edge sensitive Four 16-bit Capture registers Signals an interrupt upon external event		
8/16-bit Programmable Pulse Generator (4 channels)	Supports 8-bit and 16-bit operation modes Eight 8-bit reload counters Eight 8-bit reload registers for L pulse width Eight 8-bit reload registers for H pulse width A pair of 8 -bit reload counters can be configured as one 16-bit reload counter or as 8 -bit prescaler plus 8 -bit reload counter 4 output pins Operation clock freq.: fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @ f o s c=4 \mathrm{MHz}$ (fsys = System clock frequency, fosc = Oscillation clock frequency)		
CAN Interface 540 series: 2 channels 545 series: 1 channel	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1 Mbps		
32 kHz Subclock	Sub-clock for low power operation		
External Interrupt (8 channels)	Can be programmed edge sensitive or level sensitive		
IO Ports	Virtually all external pins can be used as general purpose IO All push-pull outputs and schmitt trigger inputs Bit-wise programmable as input/output or peripheral signal		
Flash Memory	-	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM }}$ * Write/Erase/Erase-Suspend/ Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10,000 times Data retention time: 10 years Flash Writer from Minato Electronics Inc. Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Security Feature: protects the content of the Flash memory	-

[^0]
MB90540/545 Series

PIN ASSIGNMENT

MB90540/545 Series

- PIN DESCRIPTION

No.	Pin name	Circuit type	Function
$\begin{aligned} & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	A (Oscillation)	High speed oscillator input pins
$\begin{aligned} & 80 \\ & 79 \end{aligned}$	$\begin{aligned} & \hline \mathrm{XOA} \\ & \mathrm{X} 1 \mathrm{~A} \end{aligned}$	A (Oscillation)	Low speed oscillator input pins
77	$\overline{\text { RST }}$	B	External reset request input
52	HST	C	Hardware standby input
85 to 92	P00 to P07	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode.
	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This func tion is enabled when the external bus is enabled.
93 to 100	P10 to P17	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode.
	AD08 to AD15		I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.
1 to 8	P20 to P27	H	General I/O port with programmable pullup. This function is enabled in the single-chip mode.
	A16 to A23		Output pins for A16 to A23 ot the external address bus. This function is enabled when the external bus is enabled.
9	P30	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode.
	ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.
10	P31	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode.
	$\overline{\mathrm{RD}}$		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.
12	P32	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled
	$\overline{\text { WRL }}$		Write strobe output pin for the data bus. This function is enabled
	$\overline{W R}$		abled. WRL is used to write-strobe 8 lower bits of the data bus in 16 -bit access while WR is used to write-strobe 8 bits of the data bus in 8 -bit access.
13	P33	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or external bus 8 -bit mode or when WRH pin output is disabled.
	$\overline{\text { WRH }}$		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16 -bit mode is selected, and when the WRH output pin is enabled.

MB90540/545 Series

No.	Pin name	Circuit type	Function
14	P34	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when hold function is disabled.
	HRQ		Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.
15	P35	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when hold function is disabled.
	$\overline{\text { HAK }}$		Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.
16	P36	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the external ready function is disabled.
	RDY		Ready input pin. This function is enabled when both the external bus and the external ready function are enabled.
17	P37	H	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the clock output is disabled.
	CLK		CLK output pin. This function is enabled when both the external bus and CLK output are enabled.
18	P40	G	General I/O port. This function is enabled when UARTO disables serial data output.
	SOT0		Serial data output pin for UARTO. This function is enabled when UARTO enables serial data output.
19	P41	G	General I/O port. This function is enabled when UARTO disables clock output.
	SCK0		Clock I/O pin for UARTO. This function is enabled when UARTO enables clock output.
20	P42	G	General I/O port. This function is always enabled.
	SIN0		Serial data input pin for UART0. While UART0 is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped
21	P43	G	General I/O port. This function is always enabled.
	SIN1		Serial data input pin for UART1. While UART1 is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped
22	P44	G	General I/O port. This function is enabled when UART1 disables clock output.
	SCK1		Clock pulse input/output pin for UART1. This function is enabled when UART1 enables clock output.
24	P45	G	General I/O port. This function is enabled when UART1 disables serial data output.
	SOT1		Serial data output pin for UART1. This function is enabled when UART1 enables serial data output.

MB90540/545 Series

No.	Pin name	Circuit type	Function
25	P46	G	General I/O port. This function is enabled when the Serial IO disables serial data output.
	SOT2		Serial data output pin for the Serial IO. This function is enabled when the Serial IO enables serial data output.
26	P47	G	General I/O port. This function is enabled when the Serial IO disables clock output.
	SCK2		Clock pulse input/output pin for the Serial IO. This function is enabled when the Serial IO enables clock output.
28	P50	D	General I/O port. This function is always enabled.
	SIN2		Serial data input pin for the Serial IO. While the Serial IO is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
29 to 32	P51 to P54	D	General I/O port. This function is always enabled.
	INT4 to INT7		External interrupt request input pins for INT4 to INT7. While external interrupt is allowed, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
33	P55	D	General I/O port. This function is always enabled.
	ADTG		Trigger input pin for the A/D converter. While the A/D converter is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
38 to 41	P60 to P63	E	General I/O port. The function is enabled when the analog input enable register specifies port.
	AN0 to AN3		Analog input pins for the A/D converter. This function is enabled when the analog input enable register specifies AD.
43 to 46	P64 to P67	E	General I/O port. The function is enabled when the analog input enable register specifies port.
	AN4 to AN7		Analog input pins for the A/D converter. This function is enabled when the analog input enable register specifies AD.
47	P56	D	General I/O port. This function is always enabled.
	TINO		Event input pin for the reload timers 0 . While the reload timer is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
48	P57	D	General I/O port. This function is enabled when the reload timers 0 disables output.
	TOT0		Output pin for the reload timers 0 . This function is enabled when the reload timers 0 enables output.

MB90540/545 Series

No.	Pin name	Circuit type	Function
53 to 58	P70 to P75	D	General I/O ports. This function is always enabled.
	IN0 to IN5		Data sample input pins for input captures ICU0 to ICU5. While the ICU is for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
59 to 60	P76 to P77	D	General I/O ports. This function is enabled when the OCU disables waveform output.
	OUT2 to OUT3		Waveform output pins for output compares OCU2 and OCU3. This function is enabled when the OCU enables waveform output.
	IN6 to IN7		Data sample input pin for input captures ICU6 and ICU7. While the ICU is for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
61 to 64	P80 to P83	D	General I/O ports. This function is enabled when PPG disables waveform output.
	PPG0 to PPG3		Output pins for PPGs. This function is enabled when PPG enables waveform output.
65 to 66	P84 to P85	D	General I/O ports. This function is enabled when the OCU disables waveform output.
	OUT0 to OUT1		Waveform output pins for output compares OCU0 and OCU1. This function is enabled when the OCU enables waveform output.
67	P86	D	General I/O port. This function is always enabled.
	TIN1		Event input pin for the reload timers 1. While the reload timer is op erating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
68	P87	D	General I/O port. This function is enabled when the reload timers 0 disables output.
	TOT1		Output pin for the reload timers 1 This function is enabled when the reload timers 1 enables output.
69 to 72	P90 to P93	D	General I/O port. This function is always enabled.
	INT0 to INT3		External interrupt request input pins for INTO to INT3. While external interrupt is allowed, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
73	P94	D	General I/O port. This function is enabled when CANO disables output.
	TX0		TX Output pin for CANO. This function is enabled when CANO enables output.
74	P95	D	General I/O port. This function is always enabled.
	RX0		RX input pin for CANO Interface. When the CAN function is used, output from the other functions must be stopped.

MB90540/545 Series

No.	Pin name	Circuit type	Function
75	P96	D	General I/O port. This function is enabled when CAN1 disables output.
	TX1		TX Output pin for CAN1. This function is enabled when CAN1 enables output (only MB90540 series).
76	P97	D	General I/O port. This function is always enabled.
	RX1		RX input pin for CAN1 Interface. When the CAN function is used, output from the other functions must be stopped (only MB90540 series).
78	PAO	D	General I/O port. This function is always enabled.
34	AVCC	Power supply	Power supply for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVcc is applied to Vcc.
37	AVSS	Power supply	Dedicated ground pin for the A/D Converter
35	AVR+	Power supply	Reference voltage input for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to $\mathrm{AVR}+$ is applied to AVcc .
36	AVR-	Power supply	Lower reference voltage input for the A/D Converter
$\begin{aligned} & 49 \\ & 50 \end{aligned}$	MDO MD1	C	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or Vss.
51	MD2	F	Input pin for specifying the operating mode. The pin must be directly connected to Vcc or Vss.
27	C		This is the power supply stabilization capacitor pin. It should be connected externally to an $0.1 \mu \mathrm{~F}$ ceramic capacitor.
23; 84	Vcc	Power supply	Power supply for digital circuits
$\begin{gathered} 11 ; 42 \\ 81 \end{gathered}$	Vss	Power supply	Ground for digital circuits

MB90540/545 Series

- I/O CIRCUIT TYPE

Circuit type	Diagram	Remarks
A		- Oscillation feedback resistor: $1 \mathrm{M} \Omega$ approx.
B		- Hysteresis input with pull-up Resistor: $50 \mathrm{k} \Omega$ approx.
C		- Hysteresis input
D		- CMOS output - Hysteresis input

MB90540/545 Series

Circuit type	Diagram	Remarks
E		- CMOS output - Hysteresis input - Analog input
F		- Hysteresis input - Pull-down Resistor: $50 \mathrm{k} \Omega$ approx. (except FLASH devices)
G		- CMOS output - Hysteresis input - TTL input (FLASH devices only)

MB90540/545 Series

| Circuit type | Diagram | Remarks |
| :--- | :---: | :---: | :---: | :---: |

MB90540/545 Series

- HANDLING DEVICES

(1) Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
(2) Handling unused input pins

Do not leave unused input pins open, as doing so may cause misoperation of the device. Use a pull-up or pulldown resistor.
(3) Using external clock

To use external clock, drive the X0 and X1 pins in reverse phase.
Below is a diagram of how to use external clock.

Using external clock

(4) Power supply pins (Vcc/Vss)

Ensure that all Vcc-level power supply pins are at the same potential. In addition, ensure the same for all Vsslevel power supply pins. (See the figure below.) If there are more than one Vcc or Vss system, the device may operate incorrectly even within the guaranteed operating range.

(5) Pull-up/down resistors

The MB90540/545 Series does not support internal pull-up/down resistors(except Port0 - Port3:pull-up resistors). Use external components where needed.

MB90540/545 Series

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.
(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A / D converter power supply($A V c c, A V R_{+}, A V R_{-}$) and analog inputs (AN0 to AN7) after turning-on the digital power supply (V_{cc}).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVR + or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).
(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A / D converter to $\mathrm{AVcc}=\mathrm{Vcc}, \mathrm{AV}_{\mathrm{ss}}=A V R_{+}=\mathrm{V}_{\mathrm{ss}}$.
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.
(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more ms (0.2 V to 2.7 V).
(11) Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.
(12) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in " 00 h ".
If the values of the corresponding bank register (DTB,ADB,USB,SSB) are setting other than "00h", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

MB90540/545 Series

BLOCK DIAGRAM

MB90540/545 Series

MEMORY SPACE

The memory space of the MB90540/545 Series is shown below

	MB90V540		MB90543/F543		MB90549/F549
FFFFFFF	$\begin{gathered} \text { ROM } \\ \text { (FF bank) } \end{gathered}$	FFFFFF ${ }_{\text {H }}$	$\begin{gathered} \text { ROM } \\ \text { (FF bank) } \end{gathered}$	FFFFFFF	$\begin{gathered} \text { ROM } \\ \text { (FF bank) } \end{gathered}$
	ROM (FE bank)	FE0000 ${ }^{\text {H }}$	ROM (FE bank)		ROM (FE bank)
FDFFFF FD0000н	ROM (FD bank)		External	FDFFFF FD0000	ROM (FD bank)
FCOOOOH	$\begin{gathered} \text { ROM } \\ \text { (FC bank) } \end{gathered}$			FC0000	ROM (FC bank)
	External				External
$\mathrm{OOFFFFF}_{H}$	ROM (Image of FF bank)	00FFFFH	ROM (Image of FF bank)	00FFFF ${ }_{H}$	ROM (Image of FF bank)
003900н	Peripheral	003900н	Peripheral	003900н	Peripheral
	External	002000н	External	002000н	External
0020FFH 001FF5 001FFOH					
	RAM 8K		RAM 6 K		RAM 6 K
000100 ${ }_{\text {H }}$		000100H		000100H	
	External		External		External
0000BFн 000000н	Peripheral	OOOOBFH	Peripheral	OOOOBFH	Peripheral

Memory space map

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.
For example, an attempt to access $00 \mathrm{CO00}$ н accesses the value at FFCOOO н in ROM.
The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00.
The image between FF4000н and FFFFFFF is visible in bank 00, while the image between FF0000н and FF3FFFH is visible only in bank FF.

MB90540/545 Series

I/O MAP

Address	Register	Abbreviation	Access	Pripheral	Initial value
00h	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	ХХХХХХХХХ
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	-_-_-_- $\mathrm{X}_{\text {B }}$
0Вн to 0Fн	Reserved				
10H	Port 0 direction register	DDR0	R/W	Port 0	000000008
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000 B
12н	Port 2 direction register	DDR2	R/W	Port 2	000000008
13H	Port 3 direction register	DDR3	R/W	Port 3	00000000 в
14н	Port 4 direction register	DDR4	R/W	Port 4	00000000 в
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000 в
16н	Port 6 direction register	DDR6	R/W	Port 6	$00000000{ }_{\text {в }}$
17н	Port 7 direction register	DDR7	R/W	Port 7	00000000 в
18H	Port 8 direction register	DDR8	R/W	Port 8	00000000 в
19н	Port 9 direction register	DDR9	R/W	Port 9	$00000000_{\text {в }}$
1 Ан	Port A direction register	DDRA	R/W	Port A	-
1Вн	Analog Input Enable	ADER	R/W	Port 6, A/D	111111118
1 CH	Port 0 Pullup control register	PUCR0	R/W	Port 0	000000008
1D	Port 1 Pullup control register	PUCR1	R/W	Port 1	000000008
1 1. $^{\text {¢ }}$	Port 2 Pullup control register	PUCR2	R/W	Port 2	000000008
1 FH	Port 3 Pullup control register	PUCR3	R/W	Port 3	00000000_{8}
2 OH	Serial Mode Control Register 0	UMC0	R/W	UART0	000001008
21н	Status Register 0	USR0	R/W		00010000 в
22н	Input/Output Data Register 0	UIDRO/ UODRO	R/W		ХХХХХХХХХв
23+	Rate and Data Register 0	URD0	R/W		$0000000 \mathrm{XB}_{\text {B }}$

(Continued)

MB90540/545 Series

Address	Register	Abbreviation	Access	Peripheral	Initial value
24 H	Serial Mode Register 1	SMR1	R/W	UART1	$00000000{ }_{8}$
25	Serial Control Register 1	SCR1	R/W		00000100 в
26	Input/Output Data Register 1	SIDR1/ SODR1	R/W		ХХХХХХХХХв
27 H	Serial Status Register 1	SSR1	R/W		00001100 в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		0 __ 1111 B
29н	Edge Selector	SES1	R/W		
2 А	Reserved				
2 BH	Serial IO Prescaler	SCDCR	R/W	Serial IO	$0 _\ldots 1111$ в
2 CH	Serial Mode Control	SMCS	R/W		-_-0000в
2D	Serial Mode Control	SMCS	R/W		00000010 в
2Ен	Serial Data	SDR	R/W		XXXXXXXX
2 FH	Edge Selector	SES2	R/W		_ О ${ }^{\text {¢ }}$
30н	External Interrupt Enable	ENIR	R/W	External Interrupt	$00000000{ }_{B}$
31н	External Interrupt Request	EIRR	R/W		XXXXXXXX
32н	External Interrupt Level	ELVR	R/W		$00000000{ }_{\text {B }}$
33н	External Interrupt Level	ELVR	R/W		$00000000{ }_{\text {в }}$
34	A/D Control Status 0	ADCS0	R/W	A/D Converter	$00000000{ }_{8}$
35	A/D Control Status 1	ADCS1	R/W		$00000000{ }^{\text {b }}$
36	A/D Data 0	ADCR0	R		ХХХХХХХХв
37 H	A/D Data 1	ADCR1	R/W		00001 _ $\mathrm{XX}_{\text {B }}$
38н	PPG0 operation mode control register	PPGC0	R/W	16-bit Programable Pulse Generator 0/1	0_000_-18
39н	PPG1 operation mode control register	PPGC1	R/W		$0 _000001_{B}$
ЗАн	PPG0 and PPG1 clock select register	PPG01	R/W		000000 _ ${ }^{\text {B }}$
3Вн	Reserved				
3С	PPG2 operation mode control register	PPGC2	R/W	16-bit Programable Pulse Generator 2/3	$0 _000 \ldots 1 \mathrm{~B}$
3D	PPG3 operation mode control register	PPGC3	R/W		0_0000018
ЗЕн	PPG2 and PPG3 clock select register	PPG23	R/W		000000 _ ${ }^{\text {B }}$
3 F	Reserved				
40H	PPG4 operation mode control register	PPGC4	R/W	16-bit Programable Pulse Generator 4/5	
41H	PPG5 operation mode control register	PPGC5	R/W		$0 _000001_{B}$
42н	PPG4 and PPG5 clock select register	PPG45	R/W		000000 _ ${ }^{\text {B }}$
43-	Reserved				
44 H	PPG6 operation mode control register	PPGC6	R/W	16-bit Programable Pulse Generator 6/7	$0 _000_{--18}$
45	PPG7 operation mode control register	PPGC7	R/W		0_0000018
46 +	PPG6 and PPG7 clock select register	PPG67	R/W		000000 _- ${ }^{\text {b }}$

(Continued)

MB90540/545 Series

Address	Register	Abbreviation	Access	Peripheral	Initial value
47\% to 4Bн	Reserved				
$4 \mathrm{CH}_{\mathrm{H}}$	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	0000000 -
4D	Input Capture Control Status 2/3	ICS23	R/W	Input Capture 2/3	00000000 в
4Ен	Input Capture Control Status 4/5	ICS45	R/W	Input Capture 4/5	0000000 в
4F	Input Capture Control Status 6/7	ICS67	R/W	Input Capture 6/7	0000000 в
50н	Timer Control Status 0	TMCSR0	R/W	16-bit Reload Timer 0	0000000 -
51н	Timer Control Status 0	TMCSR0	R/W		-_-00008
52н	Timer 0/Reload 0	$\begin{aligned} & \text { TMR0/ } \\ & \text { TMRLRO } \end{aligned}$	R/W		XXXXXXXX
53н	Timer 0/Reload 0	TMR0/ TMRLR0	R/W		XXXXXXXX
54,	Timer Control Status 1	TMCSR1	R/W	16-bit Reload Timer 1	0000000 -
55	Timer Control Status 1	TMCSR1	R/W		__0000в
56н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W		ХХХХХХХХв
57	Timer 1/Reload 1	TMR1/ TMRLR1	R/W		ХХХХХХХХх
58н	Output Compare Control Status 0	OCS0	R/W	Output Compare 0/1	$0000 \ldots 00$ в
59н	Output Compare Control Status 1	OCS1	R/W		00000 в
5 Ан	Output Compare Control Status 2	OCS2	R/W	Output Compare 2/3	$0000 \ldots 00$ в
5Вн	Output Compare Control Status 3	OCS3	R/W		00000 B
5Сн to 6Вн	Reserved				
6 C	Timer Data	TCDT	R/W	I/O Timer	0000000 -
6D	Timer Data	TCDT	R/W		0000000 ов
6Ен	Timer Control	TCCS	R/W		0000000 В
6F	ROM Mirror	ROMM	R/W	ROM Mirror	---- 18
70н to 7F\%	Reserved for CAN 0 Interface . Refer to "CAN Controller Hardware Manual"				
80н to 8F H	Reserved for CAN 1 Interface . Refer to "CAN Controller Hardware Manual"				
90н to 9D н	Reserved				
9 E	ROM Correction Control Status	PACSR	R/W	ROM Correction	0000000 в
$9 \mathrm{~F}_{\mathrm{H}}$	Delayed Interrupt/release	DIRR	R/W	Delayed Interrupt	------ Ов
AOH	Low-power Mode	LPMCR	R/W	Low Power Controller	00011000 в
A1н	Clock Selector	CKSCR	R/W	Low Power Controller	11111100 B
A2н to A4H	Reserved				

(Continued)

MB90540/545 Series

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
A5	Automatic ready function select reg.	ARSR	W	External Memory Access	0011 _ $000_{\text {в }}$
A6 ${ }^{\text {¢ }}$	External address output control reg.	HACR	W		$00000000{ }_{8}$
A7 ${ }^{\text {}}$	Bus control signal select register	ECSR	W		0000000 в
A8н	Watchdog Control	WDTC	R/W	Watchdog Timer	XXXXX 11 1в
A9н	Time Base Timer Control	TBTC	R/W	Time Base Timer	1-00100в
ААн	Watch timer control register	WTC	R/W	Watch Timer	$1 \times 000000{ }^{\text {B }}$
ABн to ADн	Reserved				
АЕн	Flash Control Status (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	$000 \times 0{ }_{\text {_ }} \mathrm{OB}^{\text {b }}$
AFH	Reserved				
B0H	Interrupt control register 00	ICR00	R/W	Interrupt controller	00000111_{B}
B1н	Interrupt control register 01	ICR01	R/W		00000111_{B}
В2н	Interrupt control register 02	ICR02	R/W		00000111_{B}
В3н	Interrupt control register 03	ICR03	R/W		00000111_{B}
B4н	Interrupt control register 04	ICR04	R/W		00000111_{B}
В5	Interrupt control register 05	ICR05	R/W		00000111 B
В6н	Interrupt control register 06	ICR06	R/W		00000111_{B}
B7	Interrupt control register 07	ICR07	R/W		$00000111_{\text {B }}$
B8\%	Interrupt control register 08	ICR08	R/W		00000111_{B}
B9н	Interrupt control register 09	ICR09	R/W		00000111_{B}
ВАн	Interrupt control register 10	ICR10	R/W		00000111_{B}
ВВн	Interrupt control register 11	ICR11	R/W		$00000111^{\text {B }}$
ВСн	Interrupt control register 12	ICR12	R/W		00000111_{B}
BD	Interrupt control register 13	ICR13	R/W		00000111_{B}
ВЕн	Interrupt control register 14	ICR14	R/W		00000111_{B}
BF_{H}	Interrupt control register 15	ICR15	R/W		00000111_{B}
СОн to FF_{H}	External				

Address	Register	Abbreviation	Access	Peripheral	Initial value
1FF0н	ROM Correction Address 0	PADR0	R/W	ROM Correction	ХХХХХХХХХв
1FF1н	ROM Correction Address 1	PADR0	R/W		XXXXXXXX
1FF2н	ROM Correction Address 2	PADR0	R/W		XXXXXXXX
1FF3н	ROM Correction Address 3	PADR1	R/W		XXXXXXXX
1FF4H	ROM Correction Address 4	PADR1	R/W		XXXXXXXX
1FF5 ${ }_{\text {H }}$	ROM Correction Address 5	PADR1	R/W		XXXXXXXX

MB90540/545 Series

Address	Register	Abbreviation	Access	Peripheral	Initial value
3900н	Reload L	PRLLO	R/W	16-bit Programable Pulse Generator 0/1	XXXXXXXX
3901н	Reload H	PRLH0	R/W		XXXXXXXX
3902н	Reload L	PRLL1	R/W		XXXXXXXX
3903н	Reload H	PRLH1	R/W		XXXXXXXX
3904н	Reload L	PRLL2	R/W	16-bit Programable Pulse Generator 2/3	XXXXXXXX
3905 н	Reload H	PRLH2	R/W		XXXXXXXX
3906н	Reload L	PRLL3	R/W		XXXXXXXX
3907	Reload H	PRLH3	R/W		XXXXXXXX
3908н	Reload L	PRLL4	R/W	16-bit Programable Pulse Generator 4/5	XXXXXXXX
3909н	Reload H	PRLH4	R/W		XXXXXXXX
390Ан	Reload L	PRLL5	R/W		XXXXXXXX
390Вн	Reload H	PRLH5	R/W		XXXXXXXX
390 Сн	Reload L	PRLL6	R/W	16-bit Programable Pulse Generator 6/7	XXXXXXXXв
390 н $^{\text {¢ }}$	Reload H	PRLH6	R/W		XXXXXXXX
390Ен	Reload L	PRLL7	R/W		XXXXXXXX
$390 \mathrm{~F}_{\mathrm{H}}$	Reload H	PRLH7	R/W		XXXXXXXX
3910 to 3917 ${ }^{\text {H }}$	Reserved				
3918н	Input Capture 0	IPCP0	R	Input Captue 0/1	XXXXXXXXв
3919н	Input Capture 0	IPCP0	R		XXXXXXXX
391Ан	Input Capture 1	IPCP1	R		XXXXXXXX
391Вн	Input Capture 1	IPCP1	R		XXXXXXXX
391 C	Input Capture 2	IPCP2	R	Input Captue 2/3	XXXXXXXX
	Input Capture 2	IPCP2	R		XXXXXXXX
391Ен	Input Capture 3	IPCP3	R		ХХХХХХХХХ
391F ${ }_{\text {H }}$	Input Capture 3	IPCP3	R		XXXXXXXX
3920н	Input Capture 4	IPCP4	R	Input Captue 4/5	XXXXXXXXв
3921н	Input Capture 4	IPCP4	R		XXXXXXXX
3922н	Input Capture 5	IPCP5	R		XXXXXXXX
3923н	Input Capture 5	IPCP5	R		XXXXXXXX
3924	Input Capture 6	IPCP6	R	Input Captue 6/7	XXXXXXXX
3925	Input Capture 6	IPCP6	R		XXXXXXXX
3926н	Input Capture 7	IPCP7	R		XXXXXXXX
3927	Input Capture 7	IPCP7	R		XXXXXXXX

MB90540/545 Series

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
3928н	Output Compare 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXX
3929н	Output Compare 0	OCCP0	R/W		XXXXXXXX
392Ан	Output Compare 1	OCCP1	R/W		XXXXXXXX
392Вн	Output Compare 1	OCCP1	R/W		XXXXXXXXв
392 CH	Output Compare 2	OCCP2	R/W	Output Compare$2 / 3$	XXXXXXXX
392Dн	Output Compare 2	OCCP2	R/W		XXXXXXXXв
392Ен	Output Compare 3	OCCP3	R/W		XXXXXXXX
392Fн	Output Compare 3	OCCP3	R/W		XXXXXXXXв
	Reserved				
3A00н to 3AFF	Reserved for CAN 0 Interface. Refer to "CAN Controller Hardware Manual"				
3B00 to 3BFF	Reserved for CAN 0 Interface. Refer to "CAN Controller Hardware Manual"				
3C00н to 3CFFH	Reserved for CAN 1 Interface. Refer to "CAN Controller Hardware Manual"				
3D00 ${ }_{\text {to }}$ 3DFFH	Reserved for CAN 1 Interface. Refer to "CAN Controller Hardware Manual"				
3 EOO н to 3FFF	Reserved				

Note Initial value of "_" represents unused bit, " X " represents unknown value.
Addresses in the range 0000 to $00 \mathrm{FFH}_{\mathrm{H}}$, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading " X " and any write access should not be performed.

MB90540/545 Series

CAN CONTROLLER

The MB90540 series contains two CAN controller (CAN0 and CAN1), the MB90545 series contains only one (CANO). The Evaluation Chip MB90V540 also has two CAN controller.
The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
- Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from $10 \mathrm{Kbits} / \mathrm{s}$ to $1 \mathrm{Mbits} / \mathrm{s}$ (when input clock is at 16 MHz)

List of Control Registers

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
000070н	000080н	Message buffer valid register	BVALR	R/W	0000000000000000 в
000071н	000081н				
000072н	000082н	Transmit request register	TREQR	R/W	0000000000000000 в
000073н	000083н				
000074н	000084н	Transmit cancel register	TCANR	W	0000000000000000 в
000075	000085				
000076н	000086н	Transmit complete register	TCR	R/W	0000000000000000 в
000077	000087н				
000078н	000088н	Receive complete register	RCR	R/W	0000000000000000 в
000079н	000089н				
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	0000000000000000 в
00007Вн	00008Вн				
00007 CH $^{\text {¢ }}$	00008 CH	Receive overrun register	ROVRR	R/W	0000000000000000 в
00007D	00008D				
00007Ен	00008Ен	Receive interrupt enable register	RIER	R/W	0000000000000000 в
00007Fн	00008Fн				

MB90540/545 Series

List of Control Registers

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
003B00н	003D00н	Control status register	CSR	R/W, R	00---000 0----0-1в
003B01н	003D01н				
003B02н	003D02н	Last event indicator register	LEIR	R/W	-------- 000-0000в
003В03н	003D03н				
003B04н	003D04н	Receive/transmit error counter	RTEC	R	0000000000000000 в
003B05н	003D05н				
003B06н	003D06н	Bit timing register	BTR	R/W	-1111111 11111111в
003B07н	003D07н				
003B08н	003D08н	IDE register	IDER	R/W	ХХХХХХХХ XXXXXXXXв $^{\text {¢ }}$
003B09н	003D09н				
003В0Ан	003D0Aн	Transmit RTR register	TRTRR	R/W	0000000000000000 в
003В0Вн	003D0Bн				
003B0С ${ }_{\text {H }}$	003D0CH	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX
003B0D	003D0Dн				
003B0Ен	003D0Eн	Transmit interrupt enable register	TIER	R/W	0000000000000000 в
003B0F\%	003D0FH				
003B10н	003D10н	Acceptance mask select register	AMSR	R/W	XXXXXXXX XXXXXXXX
003B11н	003D11н				
003B12н	003D12н				
003B13н	003D13н				
003B14н	003D14н	Acceptance mask register 0	AMRO	R/W	XXXXXXXX XXXXXXXXв
003B15 ${ }^{\text {H }}$	003D15н				
003B16н	003D16н				XXXXX--- XXXXXXXXB
003B17н	003D17н				
003B18н	003D18н	Acceptance mask register 1	AMR1	R/W	XXXXXXXX XXXXXXXX ${ }_{\text {в }}$
003B19н	003D19н				
003B1Aн	003D1Aн				
003B1Bн	003D1Bн				

MB90540/545 Series

List of Message Buffers (ID Registers) (1)

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
$\begin{gathered} \text { 003A00н } \\ \text { to } \\ \text { 003A1Fн } \end{gathered}$	$\begin{gathered} \hline 003 \mathrm{C} 00 \mathrm{H} \\ \text { to } \\ 003 \mathrm{C} 1 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	General-purpose RAM	-	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
003A20н	003C20 ${ }^{\text {H }}$	ID register 0	IDRO	R/W	XXXXXXXX $\mathrm{XXXXXXXXв}$
003A21н	003C21н				
003A22н	003C22н				XXXXX--- XXXXXXXXв
003A23н	003C23н				
003A24H	003C24н	ID register 1	IDR1	R/W	
003A25H	003C25 ${ }^{\text {H }}$				
003A26\%	003C26				ХХХХХ--- XXXXXXXX
003A27н	003C27 ${ }^{\text {H }}$				
003A28н	003C28н	ID register 2	IDR2	R/W	
003A29н	003C29н				
003A2Aн	003C2Aн				ХХХXX--- XXXXXXXXв
003A2Bн	003C2Bн				
003A2CH	003C2CH	ID register 3	IDR3	R/W	XXXXXXXX \times XXXXXXXв
003A2Dн	003C2Dн				
003A2Eн	003C2Eн				ХХХХХ--- ХХХХХХХХв
003A2FH	003C2F ${ }^{\text {\% }}$				
003A30H	003C30 ${ }^{\text {H }}$	ID register 4	IDR4	R/W	
003A31н	003C31н				
003A32н	003C32н				XXXXX - XXXXXXXX
003A33н	003C33н				
003A34н	003C34 ${ }^{\text {¢ }}$	ID register 5	IDR5	R/W	
003A35 ${ }^{\text {¢ }}$	003C35 ${ }_{\text {н }}$				
003A36 ${ }^{\text {¢ }}$	003C36 ${ }^{\text {H }}$				XXXXX--- Х $^{\text {PXXXXXXв }}$
003A37 ${ }^{\text {H }}$	003C37 ${ }^{\text {+ }}$				
003A38 ${ }^{\text {¢ }}$	003C38н	ID register 6	IDR6	R/W	XXXXXXXX $\mathrm{XXXXXXXXв}$
003A39н	003C39н				
003АЗАн	003С3Ан				XXXXX--- XXXXXXXX
003A3Bн	003C3Bн				

MB90540/545 Series

List of Message Buffers (ID Registers) (2)

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
003A3CH	003C3CH	ID register 7	IDR7	R/W	XXXXXXXX XXXXXXXX в
003A3D	003C3D ${ }_{\text {¢ }}$				
003АЗЕн	003С3Ен				XXXXX--- XXXXXXXX $^{\text {¢ }}$
003A3F ${ }_{\text {H }}$	003C3F\%				
003A40H	003C40н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXX ${ }^{\text {в }}$
003A41н	003C41н				
003A42н	003C42н				XXXXX--- XXXXXXXXв
003A43н	003C43н				
003A44H	003C444	ID register 9	IDR9	R/W	XXXXXXXX XXXXXXXX в
003A45 ${ }^{\text {H }}$	003C45 ${ }^{\text {H }}$				
003A46H	003C46				XXXXX--- XXXXXXXXв
003A474	003C47 ${ }^{\text {H }}$				
003A48H	003C48H	ID register 10	IDR10	R/W	XXXXXXXX XXXXXXXX
003A49н	003C49н				
003A4Ан	003C4Ан				
003A4Bн	003C4Bн				ХХХХХ--- ХХХХХХХХв
003A4CH	003C4CH	ID register 11	IDR11	R/W	XXXXXXXX XXXXXXXX ${ }^{\text {b }}$
003A4D	003C4D				
003A4Eн	003C4Eн				
003A4F\%	003C4F ${ }^{\text {H }}$				
003A50н	003C50н	ID register 12	IDR12	R/W	
003A51н	003C51н				
003A52H	003C52 ${ }^{\text {H }}$				ХХХХХ--- ХXXXXXXXв $^{\text {¢ }}$
003A53н	003C53н				XXXXX--- XXXXXXXX $^{\text {b }}$
003A54н	003C54н	ID register 13	IDR13	R/W	XXXXXXXX XXXXXXXX ${ }^{\text {B }}$
003A55H	003C55 ${ }^{\text {H }}$				
003A56H	003C56 ${ }^{\text {H }}$				XXXXX XXXXXXXX
003A57H	003C57н				XXXXX--- XXXXXXXXв
003A58H	003C58н	ID register 14	IDR14	R/W	XXXXXXXX XXXXXXXX ${ }^{\text {b }}$
003A59н	003C59н				
003A5Aн	003C5Aн				
003A5Bн	003C5Bн				
003A5CH	003C5CH	ID register 15	IDR15	R/W	XXXXXXXX XXXXXXXX в
003A5D	003C5D				
003A5Eн	003C5Eн				
003A5FH	003C5FH				

MB90540/545 Series

List of Message Buffers (DLC Registers and Data Registers) (1)

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
003A60н	003C60н	DLC register 0	DLCR0	R/W	----XXXXв
003A61н	003C61н				
003А62н	003C62н	DLC register 1	DLCR1	R/W	----XXXXв
003A63н	003C63н				
003A64н	003C64 ${ }^{\text {¢ }}$	DLC register 2	DLCR2	R/W	----XXXX ${ }_{\text {B }}$
003A65	003C65 ${ }^{\text {H }}$				
003A66н	003C66н	DLC register 3	DLCR3	R/W	----XXXX
003A67н	003C67 ${ }^{\text {H }}$				
003A68н	003C68н	DLC register 4	DLCR4	R/W	----XXXX ${ }_{\text {B }}$
003A69н	003C69н				
003A6Ан	003C6Aн	DLC register 5	DLCR5	R/W	----XXXX ${ }_{\text {B }}$
003A6Bн	003C6Bн				
003A6CH	003C6CH	DLC register 6	DLCR6	R/W	----XXXX ${ }_{\text {B }}$
003A6D	003C6D ${ }_{\text {¢ }}$				
003A6Eн	003C6Eн	DLC register 7	DLCR7	R/W	----XXXXв
003A6F	003C6F				

MB90540/545 Series

List of Message Buffers (DLC Registers and Data Registers) (2)

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
003A70н	003C70н	DLC register 8	DLCR8	R/W	----XXXX
003A71н	003C71н				
003A72н	003C72н	DLC register 9	DLCR9	R/W	----XXXX
003A73н	003C73н				
003A74H	003C74	DLC register 10	DLCR10	R/W	----XXXX
003A75	003C75				
003A76н	003C76н	DLC register 11	DLCR11	R/W	----XXXX
003A77	003C77				
003A78н	003C78н	DLC register 12	DLCR12	R/W	----XXXX
003A79н	003C79н				
003A7Aн	003С7Ан	DLC register 13	DLCR13	R/W	----XXXXв
003A7Bн	003С7Вн				
003A7С ${ }_{\text {¢ }}$	003C7С ${ }_{\text {¢ }}$	DLC register 14	DLCR14	R/W	----XXXXв
003A7D ${ }^{\text {¢ }}$	003C7D				
003A7Eн	003C7Eн	DLC register 15	DLCR15	R/W	----XXXXв
003A7F	003C7F				
003A80н to 003A87н	$\begin{gathered} \text { 003C80н } \\ \text { to } \\ 003 \mathrm{C} 87 \mathrm{H} \end{gathered}$	Data register 0 (8 bytes)	DTR0	R/W	$\begin{gathered} \hline \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \hline 003 \mathrm{~A} 88 \mathrm{H} \\ \text { to } \\ 003 \mathrm{~A} 8 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	$\begin{gathered} \text { 003C88H } \\ \text { to } \\ 003 C 8 F H \end{gathered}$	Data register 1 (8 bytes)	DTR1	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \hline 003 \text { to } \\ \text { to } \\ 003 \text { A97н } \end{gathered}$	$\begin{gathered} \text { 003C90н } \\ \text { to } \\ 003 \mathrm{C} 97 \mathrm{H} \end{gathered}$	Data register 2 (8 bytes)	DTR2	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \hline \text { 003A98н } \\ \text { to } \\ 003 A 9 F_{H} \end{gathered}$	$\begin{gathered} \text { 003C98H } \\ \text { to } \\ 003 \mathrm{C} 9 \mathrm{FH} \end{gathered}$	Data register 3 (8 bytes)	DTR3	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
003AAOH to 003AA7H	ООЗСАОн to 003CA7H	Data register 4 (8 bytes)	DTR4	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
003AA8н to 003AAFH	003СА8 to 003CAF	Data register 5 (8 bytes)	DTR5	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX }^{\prime} \end{gathered}$
003AB0н to 003AB7н	$\begin{gathered} \hline 003 \mathrm{CBOH} \\ \text { to } \\ 003 \mathrm{CB7} \end{gathered}$	Data register 6 (8 bytes)	DTR6	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$

MB90540/545 Series

List of Message Buffers (DLC Registers and Data Registers) (3)

Address		Register	Abbreviation	Access	Initial Value
CANO	CAN1				
$\begin{aligned} & \text { 003AB8H } \\ & \text { to } \\ & 003 A B F_{H} \end{aligned}$	$\begin{gathered} \hline 003 \mathrm{CB8} \\ \text { to } \\ 003 \text { CBF }_{H} \end{gathered}$	Data register 7 (8 bytes)	DTR7	R/W	$\begin{gathered} \hline \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003АСОн } \\ & \text { to } \\ & 003 А С 7 \mathrm{H} \end{aligned}$	$\begin{gathered} 003 \mathrm{CCOH} \\ \text { to } \\ 003 \mathrm{CC} 7 \mathrm{H} \end{gathered}$	Data register 8 (8 bytes)	DTR8	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003AC8H } \\ & \text { to } \\ & 003 A C F H \end{aligned}$	$\begin{gathered} \hline 003 \mathrm{CC8H} \\ \text { to } \\ 003 \mathrm{CCF} \end{gathered}$	Data register 9 (8 bytes)	DTR9	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003ADOH } \\ & \text { to } \\ & \text { 003AD7H } \end{aligned}$	$\begin{gathered} \text { 003CDOH } \\ \text { to } \\ 003 C D 7 н \end{gathered}$	Data register 10 (8 bytes)	DTR10	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX }^{\text {B }} \end{gathered}$
$\begin{aligned} & \text { 003AD8H } \\ & \text { to } \\ & 003 A D F H \end{aligned}$	$\begin{gathered} \hline 003 C D 8 \text { н } \\ \text { to } \\ 003 \mathrm{CDF} \end{gathered}$	Data register 11 (8 bytes)	DTR11	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003AEOH } \\ & \text { to } \\ & 003 \mathrm{AE} 7 \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 003 \mathrm{CEOH} \\ \text { to } \\ \text { 003CE7H } \end{gathered}$	Data register 12 (8 bytes)	DTR12	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003AE8H } \\ & \text { to } \\ & 003 A E F_{H} \end{aligned}$	$\begin{gathered} \hline \text { 003CE8H } \\ \text { to } \\ 003 \text { CEF } \end{gathered}$	Data register 13 (8 bytes)	DTR13	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003AFOH } \\ & \text { to } \\ & 003 A F 7 H \end{aligned}$	$\begin{aligned} & \text { 003CFOH } \\ & \text { to } \\ & 003 \mathrm{CF} 7 \mathrm{H} \end{aligned}$	Data register 14 (8 bytes)	DTR14	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003AF8н } \\ & \text { to } \\ & 003 A F F H \end{aligned}$	$\begin{gathered} \text { 003CF8H } \\ \text { to } \\ 003 \text { CFFH } \end{gathered}$	Data register 15 (8 bytes)	DTR15	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$

MB90540/545 Series

■ INTERRUPT MAP

Interrupt cause	${ }^{2}{ }^{2} \mathrm{OS}$ clear	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	N/A	\#08	FFFFDCH	-	-
INT9 instruction	N/A	\#09	FFFFD8н	-	-
Exception	N/A	\#10	FFFFD4 ${ }_{\text {¢ }}$	-	-
CAN 0 RX	N/A	\#11	FFFFD0н	ICR00	0000B0н
CAN 0 TX/NS	N/A	\#12	FFFFCCH		
CAN 1 RX	N/A	\#13	FFFFFC8H	ICR01	0000B1н
CAN 1 TX/NS	N/A	\#14	FFFFC4 ${ }_{\text {н }}$		
External Interrupt INT0/INT1	*1	\#15	FFFFFC0	ICR02	0000B2н
Time Base Timer	N/A	\#16	FFFFBCH		
16-bit Reload Timer 0	*1	\#17	FFFFB84	ICR03	0000B3н
A/D Converter	*1	\#18	FFFFB4		
I/O Timer	N/A	\#19	FFFFB0н	ICR04	0000B4 ${ }^{\text {H }}$
External Interrupt INT2/INT3	*1	\#20	FFFFACH		
Serial I/O	*1	\#21	FFFFA8н	ICR05	0000B5
PPG 0/1	N/A	\#22	FFFFA4н		
Input Capture 0	*1	\#23	FFFFA0н	ICR06	0000B6н
External Interrupt INT4/INT5	*1	\#24	FFFF9CH		
Input Capture 1	*1	\#25	FFFF98н	ICR07	0000B7H
PPG 2/3	N/A	\#26	FFFF94		
External Interrupt INT6/INT7	*1	\#27	FFFF90н	ICR08	0000B8н
Watch Timer	N/A	\#28	FFFF8C		
PPG 4/5	N/A	\#29	FFFF88н	ICR09	0000B9н
Input Capture 2/3	*1	\#30	FFFF84		
PPG 6/7	N/A	\#31	FFFF80н	ICR10	0000ВАн
Output Compare 0	*1	\#32	FFFF7C ${ }_{\text {H }}$		
Output Compare 1	*1	\#33	FFFF78	ICR11	0000ВВн
Input Capture 4/5	*1	\#34	FFFF74н		
Output Compare 2/3-Input Capture 6/7	*1	\#35	FFFF70н	ICR12	0000BCH
16-bit Reload Timer 1	*1	\#36	FFFF6C ${ }_{\text {H }}$		
UART 0 RX	*2	\#37	FFFF68н	ICR13	0000BD
UART 0 TX	*1	\#38	FFFF64		
UART 1 RX	*2	\#39	FFFF60н	ICR14	0000ВЕн
UART 1 TX	*1	\#40	FFFF5CH		
Flash Memory	N/A	\#41	FFFF58н	ICR15	0000BFH
Delayed interrupt	N/A	\#42	FFFF54		

MB90540/545 Series

*1: The interrupt request flag is cleared by the $I^{2} O S$ interrupt clear signal.
*2: The interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal. A stop request is available.
N / A :The interrupt request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the $I^{2} O S$ interrupt clear signal.

Note: At the end of $I^{2} O S$, the $I^{2} O S$ clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the $\mathrm{I}^{2} \mathrm{OS}$ and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ clear signal caused by the first event. So it is recommended not to use the $\mathrm{I}^{2} \mathrm{OS}$ for this interrupt number.

Note: If $I^{2} O S$ is enabled, $I^{2} O S$ is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same ${ }^{2}$ OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the $\mathrm{I}^{2} \mathrm{OS}$, the other interrupt should be disabled.

MB90540/545 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Units	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
	AVcc	Vss -0.3	Vss +6.0	V	
	AVR \pm	Vss -0.3	Vss +6.0	V	AVcc \geq AVR \pm, AVR $+\geq$ AVR-
Input voltage	V_{1}	Vss -0.3	Vss +6.0	V	*2
Output voltage	Vo	Vss -0.3	V ss +6.0	V	*2
Clamp Current	Iclamp	-2.0	2.0	mA	
"L" level max. output current	loL	-	15	mA	
"L" level avg. output current	lolav	-	4	mA	Average value over a period of 100 ms
"L" level max. overall output current	Elo	-	100	mA	
"L" level avg. overall output current	Elolav	-	50	mA	Average value over a period of 100 ms
"H" level max. output current	Іон	-	-15	mA	
"H" level avg. output current	lohav	-	-4	mA	Average value over a period of 100 ms
"H" level max. overall output current	\sum loh	-	-100	mA	
"H" level avg. overall output current	£lohav	-	-50	mA	Average value over a period of 100 ms
Power consumption	PD	-	500	mW	MB90F543/F549
		-	400	mW	MB90543/549
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Set $A V_{c c}$ and $V_{c c}$ to the same voltage. Make sure that $A V_{c c}$ does not exceed $V_{c c}$ and that the voltage at the analog inputs does not exceed $A V c c$ when the power is switched on.
*2: V_{1} and V o should not exceed $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$. V_{1} should not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the l_{1} rating supercedes the V_{1} rating.

MB90540/545 Series

2. Recommended Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value			Units	Remarks
		Min.	Typ.	Max.		
Power supply voltage	Vcc	4.5	5.0	5.5	V	
Input H voltage	ViHs	0.8 Vcc		$\mathrm{Vcc}+0.3$	V	CMOS hysteresis input pin
	Vінм	$\mathrm{Vcc}-0.3$		$\mathrm{Vcc}+0.3$	V	MD input pin
Input L voltage	Vıs	Vss -0.3		0.2 Vcc	V	CMOS hysteresis input pin
	Vim	Vss -0.3		Vss +0.3	V	MD input pin
Smooth capacitor	Cs	0.022	0.1	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the Vcc should be greater than this capacitor.
Operating temperature	TA	-40		+85	${ }^{\circ} \mathrm{C}$	

- C Pin Connection Diagram

MB90540/545 Series

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Units	Remarks
				Min.	Typ.	Max.		
Output H voltage	Vон	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}- \\ 0.5 \end{gathered}$	-	-	V	
Output L voltage	VoL	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	ILL		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Power supply current*	Icc	V co	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \% \text {, }$ Internal frequency: 16 MHz , At normal operating	-	TBD	TBD	mA	MB90543/549
				-	45	60	mA	MB90F543/F549
	Icos		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%,$ Internal frequency: 16 MHz , At sleep	-	TBD	TBD	mA	MB90543/549
				-	13	22	mA	MB90F543/F549
	Iccl		$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , At sub operation	-	TBD	TBD	mA	MB90543/549
				-	0.2	1	mA	MB90F543/F549
	Iccıs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , At sub sleep	-	TBD	TBD	$\mu \mathrm{A}$	MB90543/549
				-	10	50	$\mu \mathrm{A}$	MB90F543/F549
	Ісст		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal frequency: 8 kHz , At watch mode	-	TBD	TBD	$\mu \mathrm{A}$	MB90543/549
				-	10	50	$\mu \mathrm{A}$	MB90F543/F549
	Icch 1		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$, At stop, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	TBD	TBD	$\mu \mathrm{A}$	MB90543/549
				-	5	20	$\mu \mathrm{A}$	MB90F543/F549
	ICCH_{2}		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \% \text {, }$ At hardware standby mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	TBD	TBD	$\mu \mathrm{A}$	MB90543/549
				-	50	100	$\mu \mathrm{A}$	MB90F543/F549
Input capacity	Cin	Other than AVcc , AVss, AVR+, AVR-, C, Vcc, Vss	-	-	10	80	pF	

*: Current values are tentative. They are subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

MB90540/545 Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}\right.$ ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value			Units	Remarks
			Min.	Typ.	Max.		
Oscillation frequency	fc	$\mathrm{X} 0, \mathrm{X} 1$	3	-	16	MHz	
	fcı	X0A, X1A	-	32.768	-	kHz	
Oscillation cycle time	tcyı	$\mathrm{X} 0, \mathrm{X} 1$	62.5	-	333	ns	
	tLCyL	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	
Frequency deviation with PLL *	$\Delta \mathrm{f}$	-	-	-	5	\%	
Input clock pulse width	Pwh, PwL	X0	10	-	-	ns	Duty ratio is about 30 to 70%.
	Pwle,Pwlı	X0A	-	15.2	-	$\mu \mathrm{s}$	
Input clock rise and fall time	tcr, tcF	X0	-	-	5	ns	When using external clock
Machine clock frequency	fcp	-	1.5	-	16	MHz	When using main clock
	flcp	-	-	8.192	-	kHz	When using sub-clock
Machine clock cycle time	tcp	-	62.5	-	666	ns	When using main clock
	tıcp	-	-	122.1	-	$\mu \mathrm{s}$	When using sub-clock

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.
$\Delta f=\frac{|\alpha|}{\text { fo }} \times 100 \%$
Central frequency fo

MB90540/545 Series

- Ocsillation clock frequency and Machine clock frequency

AC characteristics are set to the measured reference voltage values below.

- Input signal waveform

Hysteresis Input Pin

- Output signal waveform

Output Pin

MB90540/545 Series

(2) Clock Output Timing

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Cycle time	tovc	CLK	$\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$	62.5	-	ns	
CLK $\uparrow \Rightarrow$ CLK \downarrow	tchcl			20	-	ns	

(3) Reset and Hardware Standby Input

Parameter	Symbol	Pin	Value		Units	Remarks
			Min.	Max.		
Reset input time	trstı	$\overline{\mathrm{RST}}$	16 top	-	ns	
Hardware standby input time	thstı	$\overline{\mathrm{HST}}$	16 tcp	-	ns	

"top" represents one cycle time of the machine clock.
Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.

MB90540/545 Series

(4) Power On Reset
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Power on rise time	tR	Vcc	-	0.05	30	ms	
Power off time	toff	Vcc		50	-	ms	Due to repetitive operation

If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you startup smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{mV} / \mathrm{sec}$, you can operate while using the PLL clock.

MB90540/545 Series

(5) Bus Timing (Read)

$\left(\mathrm{V} \mathrm{Cc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
ALE pulse width	tıнL	ALE	-	tcp/2-20		ns	
Valid address \Rightarrow ALE \downarrow time	tavll	ALE, A23 to A16, AD15 to AD00		tcp/2-20	-	ns	
ALE $\downarrow \Rightarrow$ Address valid time	tılax	ALE, AD15 to AD00		tcp/2-15	-	ns	
Valid address $\Rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavkl	$\begin{aligned} & \text { A23 toA16, } \\ & \text { AD15 to } \\ & \text { AD00, } \overline{\text { RD }} \end{aligned}$		tcp - 15	-	ns	
$\text { Valid address } \Rightarrow \underset{\text { input }}{\text { Valid data }}$	tavdv	$\begin{aligned} & \text { A23 to A16, } \\ & \text { AD15 to } \\ & \text { AD00 } \end{aligned}$		-	$5 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		3 tcp/2-20	-	ns	
$\overline{\mathrm{RD}} \downarrow \Rightarrow$ Valid data input	trLDv	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{AD} 15 \text { to } \\ & \text { AD00 } \end{aligned}$		-	$3 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}} \uparrow \Rightarrow$ Data hold time	trhdx	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{AD} 15 \text { to } \\ & \text { AD00 } \end{aligned}$		0	-	ns	
$\overline{\mathrm{RD}} \downarrow \Rightarrow \mathrm{ALE} \uparrow$ time	trHLH	$\overline{\mathrm{RD}}$, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \Rightarrow$ Address valid time	trhax	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{~A} 23 \text { to } \\ & \mathrm{A} 16 \end{aligned}$		tcp/2-10	-	ns	
Valid address \Rightarrow CLK \uparrow time	tavch	$\begin{aligned} & \text { A23 to A16, } \\ & \text { AD15 to } \\ & \text { AD00, CLK } \end{aligned}$		tcp/2-20	-	ns	
$\overline{\overline{\mathrm{RD}} \downarrow} \downarrow \mathrm{CLK} \uparrow$ time	trLCH	$\overline{\mathrm{RD}}, \mathrm{CLK}$		tcp/2-20	-	ns	
ALE $\downarrow \Rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	ALE, $\overline{\mathrm{RD}}$		tcp/2-15	-	ns	

MB90540/545 Series

- Bus Timing (Read)

MB90540/545 Series

(6) Bus Timing (Write)

($\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V , V ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Valid address $\Rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	A23 to A16, AD15 to AD00, $\overline{W R}$	-	tcp - 15	-	ns	
$\overline{\text { WR }}$ pulse width	twLwh	WR		$3 \mathrm{tcp} / 2-20$	-	ns	
Valid data output $\Rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovw	$\frac{\mathrm{AD} 15}{\mathrm{WR}} \text { to AD00, }$		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow$ Data hold time	twhdx	AD15 to AD00, $\overline{W R}$		20	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow$ Address valid time	twhax	$\frac{\mathrm{A} 23}{\mathrm{WR}} \text { to } \mathrm{A} 16,$		tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow \mathrm{ALE} \uparrow$ time	twHLH	$\overline{\text { WR, }}$ ALE		tcp/2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \Rightarrow$ CLK \uparrow time	twLCH	$\overline{\text { WR, CLK }}$		tcp/2-20	-	ns	

- Bus Timing (Write)

MB90540/545 Series

(7) Ready Input Timing

(V cc $=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
RDY setup time	trıhs	RDY	-	45	-	ns	
RDY hold time	tryнh	RDY		0	-	ns	

Note: If the RDY setup time is insufficient, use the auto-ready function.

- Ready Input Timing

MB90540/545 Series

(8) Hold Timing

$\left(\mathrm{Vcc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Pin floating $\Rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhaL	HAK	-	30	tcp	ns	
$\overline{\text { HAK }} \uparrow$ time \Rightarrow Pin valid time	thatv	$\overline{\text { HAK }}$		tcp	2 tcp	ns	

Note: There is more than 1 cycle from when HRQ reads in until the HAK is changed.

- Hold Timing

(9) UARTO/1, Serial I/O Timing

Parameter	Symbol	Pin Symbol	Condition	Value		Units	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to SCK2	Internal clock operation output pins are $C \mathrm{~L}=80 \mathrm{pF}+1 \mathrm{TTL}$.	8 tcp	-	ns	
SCK $\downarrow \Rightarrow$ SOT delay time	tstov	SCK0 to SCK2, SOT0 to SOT2		-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		100	-	ns	
SCK $\uparrow \Rightarrow$ Valid SIN hold time	tshix	SCK0 to SCK2, SINO to SIN2		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK2	External clock operation output pins are $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	SCK0 to SCK2		4 tcp	-	ns	
SCK $\downarrow \Rightarrow$ SOT delay time	tstov	SCK0 to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \Rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		60	-	ns	
SCK $\uparrow \Rightarrow$ Valid SIN hold time	tshlx	SCK0 to SCK2, SINO to SIN2		60	-	ns	

Note:

1. AC characteristic in CLK synchronized mode.
2. CL is load capacity value of pins when testing.
3. tcp is the machine cycle (Unit: ns).

MB90540/545 Series

- Internal Shift Clock Mode

- External Shift Clock Mode

MB90540/545 Series

(10) Timer Related Resource Input Timing

$$
\left(\mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Input pulse width	tтwh	TIN0, TIN1	-	4 tcp	-	ns	
	ttiwL	IN0 to IN7					

- Timer Input Timing

(11) Timer Related Resource Output Timing

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
CLK $\uparrow \Rightarrow$ Tout change time	tтo	TOT0 to TOT1, PPG0 to PPG3	-	30	-	ns	

- Timer Output Timing

MB90540/545 Series

(12) Trigger Input Timing

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	INT0 to INT7, ADTG	-	5 tcp	-	ns	

- Trigger Input Timing

MB90540/545 Series

5. A/D Converter

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vss}=0 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{AVR}_{+}-\mathrm{AVR}-, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Rated Value			Units	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-		10	bit	
Conversion error	-	-	-	-	± 5.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero reading voltage	Vot	AN0 to AN7	AVR- - 3.5	AVR- + 0.5	AVR-+4.5	mV	
Full scale reading voltage	VFST	AN0 to AN7	$\mathrm{AVR}_{+}-6.5$	$\mathrm{AVR}_{+}-1.5$	$\mathrm{AVR}_{+}+1.5$	mV	
Conversion time	-	-	-	352tcp	-	ns	
Sampling time	-	-	-	64tcp	-	ns	
Analog port input current	Iain	AN0 to AN7	-10	-	10	$\mu \mathrm{A}$	
Analog input voltage range	$V_{\text {AIN }}$	AN0 to AN7	AVR-	-	AVR ${ }_{+}$	V	
Reference voltage range	-	AVR_{+}	AVR-+ 2.7	-	AV ${ }_{\text {cc }}$	V	
	-	AVR-	0	-	$\mathrm{AVR}_{+}-2.7$	V	
Power supply current	I_{A}	AVcc	-	5	-	mA	
	ІА	$\mathrm{AV}_{\mathrm{cc}}$	-	-	5	$\mu \mathrm{A}$	*1
Reference voltage current	IR	AVR_{+}	200	400	600	$\mu \mathrm{A}$	
	ІRH	AVR ${ }_{+}$	-	-	5	$\mu \mathrm{A}$	*1
Offset between input channels	-	AN0 to AN7	-	-	4	LSB	

*1: When not operating A / D converter, this is the current $\left(V_{c c}=A V c c=A V R_{+}=5.0 \mathrm{~V}\right)$ when the CPU is stopped.

MB90540/545 Series

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter
Linearity error: The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1110" \leftrightarrow " 1111111111 ") from actual conversion characteristics
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

MB90540/545 Series

(Continued)

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of $15 \mathrm{k} \Omega$ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period $=4.00$ us @machine clock of 16 MHz).

- Equipment of analog input circuit model

Note: Listed values must be considered as standards.

- Error

The smaller the | AVR ${ }_{+}$- AVR ${ }_{-} \mid$, the greater the error would become relatively.

MB90540/545 Series

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
\#	Indicates the number of bytes.
RG: When branching of cycles.	
n : When not branching	
See Table 4 for details about meanings of other letters in items.	

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

MB90540/545 Series

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
$\begin{aligned} & \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFr)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \text { disp8 } \\ \text { disp16 } \end{gathered}$	8-bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
$\begin{aligned} & \text { ear } \\ & \text { eam } \end{aligned}$	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

MB90540/545 Series

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the left	-
04	R4	RW4	RL2		
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	$\begin{aligned} & \text { @RW0 } \\ & \text { @RW1 } \\ & \text { @RW2 } \\ & \text { @RW3 } \end{aligned}$			Register indirect	
09					
0A					0
0B					
0 C	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
0D					0
OE					0
OF					
10	@RW0 + disp8@RW1 + disp8@RW2 + disp8@RW3 + disp8@RW4 + disp8@RW5 + disp8@RW6 + disp8@RW7 + disp8			Register indirect with 8-bit	
11				displacement	
12					
13					1
14					1
15					
16					
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	@RW1 + disp16			displacement	2
1A	@RW2 + disp16@RW3 + disp16				2
1B					
	@RW0 + RW7			Register indirect with index	
1 D	@RW1 + RW7			Register indirect with index	0
1E	@PC + disp16addr16			PC indirect with 16-bit displacement	2
1F				Direct address	2

Note : The number of bytes in the address extension is indicated by the " + " symbol in the "\#" (number of bytes) column in the tables of instructions.

MB90540/545 Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	$\begin{aligned} & \hline \mathrm{Ri} \\ & \mathrm{RWi} \\ & \mathrm{RLi} \end{aligned}$	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0 C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { @RW0 + RW7 } \\ & \text { @RW1 + RW7 } \\ & \text { @PC + disp16 } \\ & \text { addr16 } \end{aligned}$	4 4 2 1	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Note : "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand		(b) byte		(c) word		(d) long	
		Access	Cycles	Access	Cycles	Access	
Internal register	+0	1	+0	1	+0	2	
Internal memory even address	+0	1	+0	1	+0	2	
Internal memory odd address	+0	1	+2	2	+4	4	
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2	
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4	
External data bus (8 bits)	+1	1	+4	2	+8	4	

Notes: • "(b)", "(c)", and "(d)" are used in the " "" (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90540/545 Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	- AH		1	s	T	N	z	v	v		Rmw
MOV	A, di	2	3	0	(b)	byte $(A) \leftarrow$ (dir)	Z				-	-						-
MOV	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow$ (addr16)	Z		*	-	-	-			-	-		-
MOV	A, Ri	1	2	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	Z		*	-	-	-				-		-
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z		*	-	-	-				-		-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	Z		*	-	-	-			-	- -		_
MOV	A, io	2	3	0	(b)	byte $($ A $) \leftarrow$ (io)	Z		*	-	-	-				-		-
MOV	A, \#imm 8	2	2	0	0	byte $($ A $) \leftarrow$ imm8	Z		*	-	-	-				- -		-
MOV	A, @A	2		0	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	-				- -		-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi) + disp8)	Z			-	-	-				- -		-
MOVN	A, \#imm4	1	1	0	,	byte (A) \leftarrow imm4	Z			-	-	-	R			- -		-
movx	A, dir	2		0	(b)	byte $($ A $) \leftarrow$ (dir)	X			-	-	-				- -		-
MOVX	A, addr16	3		0	(b)	byte (A) \leftarrow (addr16)	X			-	-	-				- -		-
MOVX	A, Ri	2	2	1	(byte (A) \leftarrow (Ri)	X			-	-	-				- -		-
MOVX	A, ear	2	2	1	0	byte $(\mathrm{A}) \leftarrow$ (ear)	X			-	-	-				- -		-
MOVX	A, eam	$2+$	$3+$ (a)	0	(b)	byte $($ A $) \leftarrow$ (eam)	X			-	-	-				- -		-
MOVX	A, io	2	,	0	(b)	byte $(A) \leftarrow$ (io)	X			-	-	-				- -		-
MOVX	A, \#imm8	2		0	0	byte $(A) \leftarrow$ imm8	X			-	-	-				- -		-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X		*	-	-	-				-		-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWW})+$ disp8)	X			-	-	-				- -		-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLL})+$ disp8)	X			-	-	-						-
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	-			-	-	-						-
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow($ A $)$	-	-	-	-	-	-				- -		-
MOV	Ri, A	1	2	1	0	byte (Ri l) \leftarrow (A)	-	-	-	-	-	-				- -		-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-	-				- -		-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	-				-		-
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	-	-		-	-	-				- -		-
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-	-		-	-	-				- -		-
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)	-	-		-	-	-				- -		-
MOV	Ri, eam	$2+$	4+ (a)	2	(b)	byte $($ Ri) $) \leftarrow$ (eam)	-	-	-	-	-	-				- -		-
MOV	ear, Ri	2	4	2	0	byte (ear) \leftarrow (Ri)			-	-	-	-				-		-
MOV	eam, Ri	$2+$	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-			-	-	-				- -		-
MOV	Ri, \#imm8	2	2	1	0	byte $(\mathrm{Ri}) \leftarrow$ imm8	-		-	-	-	-				-		-
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-		-	-	-	-			-		-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-			-	-	-	-			-		-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-	-		-	-	-				- -		-
MOV	eam, \#imm8	3+	$4+$ (a)	0	(b)	byte (eam) \leftarrow imm8	-			-	-	-	-			- -		-
MOV	@AL, AH @A, T	2	3	0	(b)		-			-								
XCH	A, ear	2	4	2	0	byte $(\mathrm{A}) \leftrightarrow$ (ear)	Z	-		-	-	-	-	-				-
$\times \mathrm{XCH}$	A, eam	2+	5+ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-	-	-	-	-	-	-		- -		-
XCH	Ri, ear		7	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	- -		-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-		-	-	-	-	-	$-1-$	- -		-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH		1	s	T	N	z	v	c	ww
MOVW A,	2	3	0	(c)	word (A) \leftarrow (dir)						-					
MOVW A, addr	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-		*	-	-	
MOVW A, SP	1	1	0	0	word $(A) \leftarrow(S P)$	-			-	-	-	*	*	-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow(R W i)$	-			-	-	-	*	*	-	-	-
MOVW A, ear	2	2	1	0	word $(A) \leftarrow($ ear $)$	-			-	-	-	*	*	-	-	-
MOVW A, eam	$2+$	$3+$ (a)	0	(c)	word (A) \leftarrow (eam)	-			-	-	-	*	*	-	-	-
MOVW A, io	2	(a)	0	(c)	word (A) \leftarrow (io)	-			-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{A})$)	-	-		-	-	-	*		-	-	-
MOVW A, \#imm16	3	2	0	0	word (A) \leftarrow imm16	-			-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow(($ RWi) + disp8)	-			-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow(($ RLi $)+$ disp8)	-					-	*				
MOVW dir, A	2	3	0	(c)	word (dir) $\leftarrow(\mathrm{A})$	-				-	-				-	-
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-			-	-	-			-	-	
MOVW SP, A	1	1	0	0	word (SP) $\leftarrow(\mathrm{A})$	-	-		-	-	-			-	-	-
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$		-		-	-	-			-	-	
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(\mathrm{A})$		-		-	-	-				-	
MOVW eam, A	$2+$	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$		-		-	-	-				-	-
MOVW io, A	2	3	0	(c)	word (io) $\leftarrow(\mathrm{A})$					-	-				-	
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) + disp8) $\leftarrow(\mathrm{A})$		-		-	-	-				-	
MOVW @RLi+disp8, A	3	10	2	(c)	word ($(\mathrm{RLI} \mathrm{I})+$ disp8) $\leftarrow(\mathrm{A})$				-	-	-				-	
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)						,				-	
MOVW RWi, eam	$2+$	4+ (a)	1	(c)	word (RWi) \leftarrow (eam)		-		-	-	,				-	
MOVW ear, RWi	2+	${ }^{4}$	2	0	word (ear) $\leftarrow($ RWi)		-		-		-				-	
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) $\leftarrow($ RWi)		-	-	-		-				-	
MOVW RWi, \#imm16	3	2	1	0	word $(\mathrm{RWi}) \leftarrow$ imm16				-		-				-	
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16						-		-		-	
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16						-				-	
MOVW eam, \#imm16 MOVW @AL, AH	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16						-					
MOVW @AL, AH /MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow(\mathrm{AH})$	-	-									
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)					-	-	-	-		-	-
XCHW A, eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (A) $\leftrightarrow($ eam $)$	-	-		-	-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-		-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	9+(a)	2	$2 \times$ (c)	word (RWi) $\leftrightarrow($ eam	-	-			-	-	-	-	-	-	-
MOVL A, ear	2	4	2	0	long (A) \leftarrow (ear)						-					
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-	-				-			-	-	-
MOVL A, \#imm32	5	(a)	0	(long $(\mathrm{A}) \leftarrow$ imm 32	-	-			-	-			-	-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-		-	-	-	*		-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-			_	-			-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#		RG	B	Operation	LH	AH	1	s	T	N	z	v	c	Rmw
	2	2	0			Z									
	2	5	0	(b)	byte $(A) \leftarrow(A)$	z				-			*		
A,	2	3	1	(b)	byte $(A) \leftarrow(A)+($ ear $)$	Z	-			-					-
A, ea	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-						
d ear, A	2	3	2	(byte (ear) \leftarrow (ear) + (A)	-			-						-
ADD eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+($ A $)$	Z			-						
ADDC A	1	2	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z			-						
ADDC A, ea	2	3	1	0	byte (A) $\leftarrow(\mathrm{A})+($ ear $)+(\mathrm{C})$	Z			-						-
ADDC A, ea	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+$ (C)	Z			-						-
ADDDC A	1	(a)	0	(b)	byte (A) $\leftarrow(\mathrm{AH})+(\mathrm{AL})+$ (C) (decimal)	Z			-						
SUB A, \#imm	2	2	0	0	byte $(A) \leftarrow(A)$-imm8	Z									-
SUB A, dir	2	5	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (dir)	Z									
SUB A, ear	2	3	1	(b)	byte $(A) \leftarrow(A)-($ ear $)$	Z									
SUB A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ eam $)$	Z									
SUB ear, A		,	2	(byte (ear) \leftarrow (ear) - (A)										
SUB eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(\mathrm{A})$										
SUBC A	1	2	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z									
SUBC A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (ear) - (C)	Z			-						
SUBC A, ea	$2+$	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{eam})-$ (C)	Z									
SUBDC A	1	3	0)	byte (A) $\leftarrow(\mathrm{AH})-(\mathrm{AL})-$ (C) (decimal)	Z									
ADDW A	1	2	0	0	$(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})$										
ADDW A, ear	2	3	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})+$ (ear)	-				-					
ADDW A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-				-					
ADDW A, \#imm16	3	2	0	(word $(\mathrm{A}) \leftarrow(\mathrm{A})+$ +imm16	-				-					
ADDW ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	-									
ADDW eam, A	$2+$	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-									
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+(e a r)+(C)$	-									
ADDCW A, ea	2+	4+	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-									
SUBW A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-									
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A)-(e a r)$	-									
SUBW A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$										
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)-$ imm16										
SUBW ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)$ - (A)										
SUBW eam, A	$2+$	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ - (A)										
SUBCW A, ea	2	(a)	1	0	word $(A) \leftarrow(A)-(e a r)-(C)$	-	-		-						
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-									
ADDL A,		(a)	2	(d)	long $(A) \leftarrow(A)+$ (ear)										
ADDL A, eam	$2+$	7+ (a)	0	(d)	long $(A) \leftarrow(A)+$ (eam)										
ADDL A, \#imm32	5	-	0	0	long $(A) \leftarrow(A)+i m m 32$					-					-
SUBL A, ear	2	${ }^{6}$	2	0	long $(A) \leftarrow(A)-$ (ear)					-					-
SUBL A, eam	$2+$	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)-$ (eam)	-	-		-	-					-
SUBL A, \#imm32	5	4	0)	long $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm32	-	-		-	-					

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+(\mathrm{a})$	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW A, ear	2	2	1	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+(a)$	0	(c)	word $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	$7+(a)$	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	A		1	s	T	N	z	v	c	RM
DIVU A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-		-	-	-	-	-			-
DIVU A, ear	2	*2	1	0	word (A)/byte (ear)	-			-	-	-	-	-	*	*	-
DIVU A, eam	2+	*	0	*6	word (A)/byte (eam)	-			-	-	-		-	*		-
DIVUW A, ear	2	* 4	1	0	long (A)/word (ear)	-			-	-	-	-	-	*		-
DIVUW A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-			-	-	-	-	-	*		-
MULU A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-			-	-	-	-	-	-	-	-
MULU A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-			-	-	-	-	-	-	-	-
MULU A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-			-	-	-	-	-	-	-	-
MULUW A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-			-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-		-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-		-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+(\mathrm{a})$ when the result is zero, $9+$ (a) when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
DIV	A	2	${ }^{*} 1$	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL	Z	-	-	-	-	-	-	*	*	-
	A, ear	2	*2	1	0	Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*		-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	(b)	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10		(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	2	*11	0	($)$	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	(c)	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $22+$ (a) for an overflow, and $23+$ (a) for normal operation.
*4: Positive dividend: Set to 4 when the division-by- 0,10 or 29 for an overflow, and 30 for normal operation.
Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+$ (a) for an overflow, and $31+$ (a) for normal operation.
Negative dividend: Set to $4+$ (a) when the division-by- $0,12+$ (a) or $31+$ (a) for an overflow, and $32+$ (a) for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times(\mathrm{b})$ for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+(\mathrm{a})$ when byte (eam) is zero, $13+$ (a) when the result is positive, and $14+$ (a) when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+$ (a) when word (eam) is zero, $17+$ (a) when the result is positive, and $20+$ (a) when the result is negative.
Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90540/545 Series

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
AND	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8	-	-	-	-	-	*	*	R	-	-
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*		R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
AND	eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-	*	*	R	-	*
OR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
OR	eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow (eam) or (A)	-	-	-	-	-	*	*	R	-	*
XOR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-	-	-	-	-	*	*	R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XOR	A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XOR	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*	*	R	-	*
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-		*	R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	$5+(\mathrm{a})$	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*		R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
ORW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*	*	R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*		R	-	-
ORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
ORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) or (A)	-	-	-	-	-	*	*	R	-	*
XORW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*	*	R	-	-
XORW	A, ear	2	3	0	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOTW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow$ not (A)	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	5+ (a)	0	$2 \times(\mathrm{c})$	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
ANDL	A, ear	2	6	2	0	lon	-	-	-	-	-			R	-	
ANDL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	
ORL	A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-		*	R	-	-
ORL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	
XORL	A, eam	$2+$	7+ (a)	0	(d)	long $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (eam)	-	-	-	-	-		*	R	-	-

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	Rg	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
NEG A		1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
NEG	ear	2	3	2	0	byte (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
NEG	eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow 0-$ (eam)	-	-	-	-	-	*	*	*	*	*
NEGW A		1	2	0	0	word (A) $\leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*		-
NEGW ear		2	3	2	0	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
		$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow 0$ - (eam)	-	-	-	-	-		*			*

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	s	T	N	z	v	c	RMw
NRML A, RO	2	$* 1$	1	0	long $($ A $) \leftarrow$ Shift until first digit is " byte $(R 0)$ \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
RORC A	2	2	0	0	byte $($ A $) \leftarrow$ Right rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*		-	*	-
RORC eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC eam	$2+$	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-		*	-	*	*
ASR A, R0	2	*1	1	0	byte $(A) \leftarrow$ Arithmetic right barrel shift (A, R $)$)	-	-	-	-			*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	-	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-			-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-				-	*	-
LSRW A/SHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)	-	-	-	-	-		*	-	*	-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A,	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, RO) word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long $(A) \leftarrow$ Arithmetic right shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*		*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(R 0)$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 19 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	나	A		1	s	S	T	N	z	v	c	Rmw
BZ/BEQ	2	*1	0	0	Branch when (Z) = 1	-			-	-		-	-		-		-
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-	-		_	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) = 1	-	-		-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-		-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-		-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-		-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-			-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-	-		-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-		-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=0$	-	-		-	-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) $=1$	-	-		-		-	-	-	-	-	-	-
BGT rel	2	${ }^{*} 1$	0	0	Branch when ((V) xor (N)) or (Z) $=0$		-		-	-	-	-	-	-	-	-	-
BLS rel	2	${ }_{* 1}^{*}$	0	0	Branch when (C) or (Z) = 1	-	-		-	-	-	-	-	-	-	-	-
BHI rel	2	${ }_{* 1}^{* 1}$	0	0	Branch when (C) or (Z) = 0	-	-		-	-	-	-	-	-	-	-	-
BRA rel	2	${ }^{*}$	0	0	Branch unconditionally	-			-	-	-	-	-	-		-	-
JMP @A	1	2	0	0	word (PC) \leftarrow (A$)$	-			-			-	-				-
JMP addr16	3	3	0	0	word (PC) \leftarrow addr 16	-	-		-	-	-	-	-	-	-	-	
JMP @ear		(a)	0	(c)	word (PC) \leftarrow (ear)		-		-	-	-	-	-	-	-	-	
JMP @eam	$2+$	4+ (a)	0	(c)	word (PC) $\leftarrow($ eam)		-		-	-		-	-	-	-	-	
JMPP @ear*3	2	(a)		0	word (PC) \leftarrow (ear), (PCB) $\leftarrow($ ear +2)	-	-		-	-		-	-	-	-	-	
JMPP @eam*3	$2+$	6+ (a)	0	(d)	word (PC) $\leftarrow($ eam), (PCB$) \leftarrow($ eam +2$)$	-	-		-	-		-	-	-	-	-	
JMPP addr24	4	4	0)	word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15, $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23				-			-					
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-	-		-	-	-	-	-	-	-	-	-
CALL @eam *4	$2+$	$7+$ (a)	0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-	-		-			-	-	-	-	-	-
CALL addr16*5	3	6	0	(c)	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-					-	-	-	-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-	-		-			-	-	-	-	-	-
CALLP @ear*6	2	10	2	2× (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 , $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-			-			-	-		-	-	
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-			-			-	-	-	-	-	-
CALLP addr24*7	4	10	0	$2 \times$ (c)	word (PC) \leftarrow addr0 to 15 , $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-			-			-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times$ (c)
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 20 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	A	н	1	s	T	N		z	v	c	RMw
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte (A) $=$ imm8	-	-			-							
CWBNE A, \#imm16, rel	4	*1	0	0	Branch when word (A) $=$ imm16	-		-	-	-		*					-
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) $=$ imm8	-	-	-	-	-		*		*			-
CBNE eam, \#imm8, rel* ${ }^{* 10}$	4+	* 3	0	(b)	Branch when byte (eam) \neq imm8	-	-			-		*		*	*		-
CWBNE ear, \#imm16, rel	5	* 4		0	Branch when word (ear) $\#$ imm16	-	-	-		-		*		*			-
CWBNE eam, \#imm16, re**10	5+	*3	0	(c)	Branch when word (eam) $=$ imm16	-	-	-		-		*		*			-
DBNZ ear, rel	3	*	2	0	Branch when byte (ear) =	-				-		*		* *			-
					(ear) - 1, and (ear) $\neq 0$												
DBNZ eam, rel	3+	* 6	2	$2 \times$ (b)	Branch when byte $($ eam $)=$ (eam) -1 , and (eam) $\neq 0$	-				-							*
DWBNZ ear, rel	3	*5	2	0		-											-
					$\text { (ear) }-1 \text {, and (ear) } \neq 0$												
DWBNZ eam, rel	3+	*6	2	$2 \times$ (c)	Branch when word $($ eam $)=$ (eam) -1 , and (eam) $\neq 0$	-	-		-	-							*
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt	-			R	S						-	
INT addr16	3	16	0	6x (c)	Software interrupt	-				S	-						-
INTP addr24	4	17	0	6x (c)	Software interrupt	-											-
INT9	1	20	0	$8 \times$ (c)	Software interrupt	-				S				-			-
RETI	1	15	0	*7	Return from interrupt	-											_
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set	-											
					new frame pointer, and allocate local pointer area												
UNLINK	1	5	0	(c)	At constant entry, retrieve old frame pointer from stack.	-	-				-						-
RET *8	1	4	0	(c)	Return from subroutine	-	-		-	-	-	-	-	-		-	-
RETP *9	1	6	0	(d)	Return from subroutine	-	-		-	-	-	-		-			-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Set to $3 \times$ (b) $+2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.
*8: Retrieve (word) from stack
*9: Retrieve (long word) from stack
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 21 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})), \mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ or imm8	-	-	*	*	*	*	*		*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) ¢ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+(\mathrm{a})$	1	0	word (RWi) ¢eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word $(A) \leftarrow$ ear	-	*	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+(\mathrm{a})$	0	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ +ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ +imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $($ A $) \leftarrow($ brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte $($ brg2 $) \leftarrow(A)$	-	-	-	-	-	*		-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	,	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH		Ан	1	s	T		N	z	v	c	RMw
MOVB A, dir:bp	3	5	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir:bp) b	Z			-	-	-				-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte $($ A $) \leftarrow$ (addr16: bp) b	Z		*	-	-	-			*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow$ (io:bp) b	Z			-	-	-			*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-			*	-	-	*
MOVB addr16:bp, A		7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-		*	*	-	-	*
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-			*	-	-	*
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$			-	-	-	-		-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-		-	-	-	-		-	-	-	-	
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-		-	-	-	-		-	-	-	-	
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$			-	-	-	-		-	-	-	-	
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-		-	-	-	-		-	-	-	-	
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-		-	-	-	-		-	-	-	-	
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=0$	-		-	-	-	-		-		-	-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) b $=0$	-		-	-	-	-		-		-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-		-	-	-	-		-		-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) b = 1	-		-	-	-	-		-	*			-
BBS addr16:bp, rel	5	${ }^{*}$	0	(b)	Branch when (addr16:bp) $\mathrm{b}=1$	-		-	-	-	-					-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-		-	-	-	-		-	*	-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr16:bp) $\mathrm{b}=1, \mathrm{bit}=1$	-		-	-	-	-		-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-		-	-	-	-			-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-		-	-	-	-		-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	s	T	N	Z	V	C	RMw
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow($ (A) 8 to 15	-	-	-	-	-	-	-	-	-	-
SWAPW	1	2	0	0	word (AH $\leftrightarrow($ AL $)$	-	$*$	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	$*$	$*$	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	$*$	$*$	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	$*$	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	$*$	-	-	-

MB90540/545 Series

Table 24 String Instructions [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ¢ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow$ AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0) for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RWO $)+(\mathrm{c}) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times \mathrm{n}$
*8: $2 \times$ (RW0)
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90540/545 Series

- ORDERING INFORMATION

Part number	Package	Remarks
MB90543PF	100-pin Plastic QFP	
MB90F543PF	(FPT-100P-M06)	
MB90548PF		
MB90F548PF	100-pin Plastic LQFP (FPT-100P-M05)	
MB90543PFF	MB90F543PFF	256-pin Ceramic PGA
MB90548PFF		
MB90F548PFF	(PGA-256C-A01)	For evaluation
MB90V540CR		

MB90540/545 Series

PACKAGE DIMENSIONS

100-pin Plastic QFP
(FPT-100P-M06)

© 1994 FUJTSU LIMTED F100008-3C-2

MB90540/545 Series

100-pin Plastic LQFP
(FPT-100P-M05)

© 1995 FUUITSU LIMTED F100007--CL-3
Dimensions in mm (inches)

MB90540/545 Series

© 1994 FUUITSU LIITTED R256001SC.-5.3
Dimensions in mm (inches)

MB90540/545 Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9909

© FUJITSU LIMITED Printed in Japan

[^0]: *1: Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

